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Programming styles

... have evolved from simple formula translation and direct addressing of
variables to something more abstract.

• “Object-oriented programming”.

• “Component-based design”.

• “High-level standards based on abstract datatypes”.
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Performance crisis
The abstraction penalty is high. Much of the crisis revolves around the f90 array model:

• array syntax.

• assumed-shape arrays degrade data flow.

• The pointer attribute introduces “aliasing” problems.

The tradeoffs:

• conformance checking

• flexibility in stride and layout

• readability

versus ...

• performance.
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Key quotes

• “Do not yield to CSBS.”

• “Have we been sold a bill of goods?”

• “At a sufficient level of abstraction, the universe is mostly empty space.”
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Array arguments: “f77” versus “f90”
• f90:

real :: a(ni,nj,nk)...
call sub(a)
subroutine sub(a)
real, intent(in) :: a(:,:,:) (1)

• f77:

real :: a(ni,nj,nk)...
call sub(a,ni,nj,nk)
subroutine sub(a,ni,nj,nk)
integer, intent(in) :: ni, nj, nk
real, intent(in) :: a(ni,nj,nk) (2)

The f77 style calling syntax has a higher probability (∼1) of passing the array by reference, and
the f90 style has a higher probability of generating an array temporary.
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Data copies
Compilers have shown themselves unable to solve the problem of deciding when an array
argument is well-formed (contiguous, unit stride). When they find this ambiguity, they generate
an array temporary, and a memory copy, for safety.

A simple test case based on MOM4 shows that the behaviour is different depending on whether

• array is held within a type (foo%bar(:,:,:))

• array has pointer or allocatable attribute

• array is inherited from module or passed as argument

• array uses static or dynamic allocation.

We have requested SGI and Intel compiler groups over the years to provide pragmas or com-
piler directives (!dir$, #pragma) whereby the user can force the generation of an array
temporary at one spot, and prohibit it in another.
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Portability
None of this behaviour is predictable, and none of the experience carries over from one plat-
form to the next.

• Altix (and many other platforms) have implemented the Fortran 2000 extension of allowing
allocatable arrays within types. We have shown on Altix that this significantly improves
performance of certain data structures in FMS.

#ifdef __ia64
#define _ALLOCATABLE allocatable
#define _ALLOCATED allocated
#else
#define _ALLOCATABLE pointer
#define _ALLOCATED associated
#endif
type :: foo
real, _ALLOCATABLE :: bar(:)
end type...
if( .NOT. _ALLOCATED(foo%bar) )allocate( foo%bar(n) ) (3)

• On IBM, dynamic allocation outperforms static!
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Frameworks
Software frameworks promise to deliver a parallel programming model that:

• is high performance

• is easy to use

• uses high-level parallel programming constructs to hide underlying architectural complex-
ity

• provides portable, interchangeable software modules that can be exchanged across the
entire community.

The major disadvantage is that frameworks tend to be pervasive. For instance, it is now not
easy to detach a physics module from FMS and make it usable within some other model...
almost every FMS module has a dependency on our own error handler, diagnostics manager,
restart I/O and MPP.

Community-wide standards (ESMF, PRISM) are still very immature. Their pervasive nature
means a significant and risky long-term commitment.
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Protecting algorithms from frameworks

The dilemma is that models and platforms are both now too complex to tolerate
the more direct programming style where the user retains control over memory
management, and over data flow. Yet, the more abstract programming style
that is needed in the current software environment has significant performance
shortfalls, and considerable sunk costs for framework adoption.

Is there a way to develop algorithms where the data flow is more controlled, yet
orchestrated at high level using abstract logic and datatypes?

We propose a programming model which we call the kernel-driver program-
ming model.
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The kernel-driver programming model
• Software is organized into modules that perform a certain operation. The granularity

of modules is still to be decided: a module could be a dynamical core (FV), a physics
package (radiation, cumulus momentum transport), a diffusion scheme, or a differential
operator.

• The module has state variables where an input state is passed in, and the modified state
or tendency is passed out. There may be multiple instances of a state within the same
run.

• The driver is a high-level public routine, typically working with abstract datatypes ex-
pressing the state, and allied with some software framework. The driver performs most
technical functions associated with program execution, such as managing parallel data
dependencies, I/O, and exception handling. Usually these functions are associated with
a framework. Drivers associated with multiple frameworks (FMS, ESMF, ...) may be pro-
vided.

• The driver calls a kernel for performing the algorithmic function of the module. The kernel
is a pure serial routine operating entirely through intrinsic types and argument lists. The
interface is designed to pass all arrays by reference. There may be multiple kernels asso-
ciated with a driver (e.g B- and C-grid versions of a dynamical routine, different flavours
of a scheme). The driver may have to call the kernel several times in a single pass to
complete updating a domain (examples below). The kernel is a private routine; only the
driver can call it. But it can be private to different modules, with different drivers.
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Driving forces at GFDL

• FMS framework adoption is proving to be a significant barrier for some of
the more recent added models: HIMF and ZETAC. ESMF adoption possi-
bly has an even higher barrier.

• For ZETAC in particular, we saw the need for redesign of the AM physics
calling tree to support the particularities of the NH core (regionality, high-
resolution). We used this as an excuse to study the AM physics interfaces
again from a design and dataflow standpoint, to see if we could arrive at
something of benefit to everyone in terms of increased flexibility.

• Hybrid ocean core development over the next few years requires the abil-
ity to develop and do extensive road tests on algorithms in a framework-
neutral manner. This discussion has been informally called the “GOLLUM
project”.

10



Refactoring guidelines

At this point, we learnt that there’s a technical name, a field, probably some
journals, and no doubt some world experts with tenure, on what we’re doing...
refactoring!

http://www.linuxjournal.com/article/8087

The AM physics redesign got underway with the following guidelines:

• no answer changes, and

• no performance degradation!
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Structure of module foo

• module foo_mod

defines all the public interfaces of foo. This may include a public datatype foo_type
to hold the state variable, which may contain many scalar parameters and many state
arrays.

• subroutine foo_init

called once to initialize the module.

• subroutine foo_exit or foo_end

called once to terminate the module.

• Unit test program.

#ifdef test_foo
program foo_unit_test...
#endif (4)
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Structure of module foo: managing instances of

foo_type

• subroutine foo_new(foo_inst)

type(foo_type), intent(out) :: foo_inst

creates a new instance of foo_type. Registers diag fields, reads input
parameters, initializes data arrays.

• subroutine foo_del(foo_inst)

type(foo_type), intent(inout) :: foo_inst

destroys an instance of foo_type.
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Structure of module foo: driver and kernel
• subroutine foo(foo_inst,...)

type(foo_type), intent(inout) :: foo_inst

The driver routine may update the input itself, or fill or increment another type holding a
tendency. The driver calls diagnostics routines, halo updates, error handling routines.

Sets up arrays to call the kernel, and performs all correctness and conformance checks.
Performs one or a series of calls to the kernel.

• subroutine foo_kernel(bar,i,...,rc)

integer :: i(18)
real, intent(inout) :: bar(i(1):i(2),i(3):i(4)...)

call foo_kernel( foo%bar(isd,jsd,1), (/is,ie,js,je,.../), ... )

foo_kernel is a private routine that has no dependencies on any framework, and typ-
ically is called through a framework-related driver. In case of error, it does not stop, but
returns an error code rc, and the driver must take appropriate action.

Since the kernel has no dependencies, it can be archived and called directly as an exter-
nal library routine. Of course, in this case, all the safety features and technical functions
usually supplied by a framework are absent.
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The kernel interface: the index array
The kernel is a serial routine called by a parallel framework. The input index array tells the
kernel how to dimension the array, what portion of the domain has valid data, and what subset
of the domain to operate upon.

Consider an example of a parallel code where the algorithm has a de-
pendency on (i+1,j). One possible way to overlap communication
with computation is to have the driver make 3 separate calls to the ker-
nel, from left to right on the regions shown with blue lines, interspersed
with non-blocking halo update calls.

call foo_kernel(1)
call mpp_update_domains(...)
call foo_kernel(2)
call mpp_update_domains(...,COMPLETE)
call foo_kernel(3) (5)

Alternatively, the same kernel could be called from a cache-blocked model, with arrays struc-
tured as (i,j,k,n), where the block loop over n is placed in the driver. A single 3D kernel
can serve the needs of codes using either 3D or 4D cache-blocked array patterns.
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The kernel interface: other arguments
• Should physical constants also be passed through an argument list?

• Should we permit optional work arrays?

• Should we permit automatic arrays within the kernel?

• Should the code be entirely thread-safe?

• Should its entire state be contained in its arguments?

Many such questions cannot be answered from first principles, but by prototyping actual code.
A lot depends on the appropriate granularity at which we designate something to be a module,
with its own kernel. We are still working through these issues.

Let us now look at some code examples.
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Problems with the pointer attribute
• Compiler cannot assume pointer is static.

real, pointer :: a(:)
call sub(a)
subroutine sub(a)
real, intent(inout), pointer :: a(:) (6)

A memory copy of a is generated.

• Pipeline optimizations are inhibited.

real, pointer :: a(:)
a(:) = b(:) (7)

Compiler has to allow for the possibility that a and b have overlapping memory locations:
aliasing.
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Problems with pointer attribute: memory leaks
Two ways to initialize a pointer array:

• Association:

real, pointer :: a(:)
real :: b(n)
a => b...
nullify(a) (8)

• Allocation:

real, pointer :: a(:)
allocate( a(n) )...
nullify(a) (9)

which actually does the following:

real, pointer :: a(:)
real :: _tmp(:)
allocate( _tmp(n) )
a => _tmp
...
nullify(a) (10)

In the case of CodeBlock 10, the nullification leaves a dangling array with no handle!

A safe way is to use deallocate(a,stat=rc), which will never abort. The safer way is to use the f2k extension
where possible and avoid pointers. A MOM4 test at OM3 resolution shows a 20% improvement on the Altix.
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